Abstract
Exposure to ionizing radiation remains a hazard for patients and healthcare providers. We evaluated the utility of an artificial intelligence (AI)-enabled fluoroscopy system to minimize radiation exposure during image-guided endoscopic procedures. We conducted a prospective study of 100 consecutive patients who underwent fluoroscopy-guided endoscopic procedures. Patients underwent interventions using either conventional or AI-equipped fluoroscopy system that uses ultrafast collimation to limit radiation exposure to the region of interest. The main outcome measure was to compare radiation exposure with patients, which was measured by dose area product. Secondary outcome was radiation scatter to endoscopy personnel measured using dosimeter. Of 100 patients who underwent procedures using traditional (n = 50) or AI-enabled (n = 50) fluoroscopy systems, there was no significant difference in demographics, body mass index, procedural type, and procedural or fluoroscopy time between the conventional and the AI-enabled fluoroscopy systems. Radiation exposure to patients was lower (median dose area product 2,178 vs 5,708 mGym, P = 0.001) and scatter effect to endoscopy personnel was less (total deep dose equivalent 0.28 vs 0.69 mSv; difference of 59.4%) for AI-enabled fluoroscopy as compared to conventional system. On multivariate linear regression analysis, after adjusting for patient characteristics, procedural/fluoroscopy duration, and type of fluoroscopy system, only AI-equipped fluoroscopy system (coefficient 3,331.9 [95% confidence interval: 1,926.8-4,737.1, P < 0.001) and fluoroscopy duration (coefficient 813.2 [95% confidence interval: 640.5-985.9], P < 0.001) were associated with radiation exposure. The AI-enabled fluoroscopy system significantly reduces radiation exposure to patients and scatter effect to endoscopy personnel (see Graphical abstract, Supplementary Digital Content, http://links.lww.com/AJG/B461).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.