Abstract
Universal primary education is critical for individual academic growth and overall adult productivity of nations. Estimates indicate that 25% of 59 million primary age out of school children drop out and early grade failure is one of the factors. An objective and feasible screening measure to identify at-risk children in the early grades can help to design appropriate interventions. The objective of this study was to use a Machine Learning algorithm to evaluate the power of Electroencephalogram (EEG) data collected at age 4 in predicting academic achievement at age 8 among rural children in Pakistan. Demographic and EEG data from 96 children of a cohort along with their academic achievement in grade 1–2 measured using an academic achievement test of Math and language at the age of 7–8 years was used to develop the machine learning algorithm. K- Nearest Neighbor (KNN) classifier was used on different model combinations of EEG, sociodemographic and home environment variables. KNN model was evaluated using 5 Stratified Folds based on the sensitivity and specificity. In the current dataset, 55% and 74% failed in the mathematics and language test respectively. On testing data across each fold, the mean sensitivity and specificity was calculated. Sensitivity was similar when EEG variables were combined with sociodemographic, and home environment (Math = 58.7%, Language = 66.3%) variables but specificity improved (Math = 43.4% to 50.6% and Language = 32% to 60%). The model requires further validation for EEG to be used as a screening measure with adequate sensitivity and specificity to identify children in their preschool age who may be at high risk of failure in early grades.
Highlights
Universal primary education is regarded as the key to the successful development and prosperity of future generations
The objective of this study was to determine the potential of a ML algorithm to evaluate the power of EEG data collected at age 4 in predicting academic achievement (Math and Language) at age 8 among rural children in Pakistan
Reasons for exclusion included lost to follow-up at age 8 years (n = 11), data not available due to corrupt EEG files, or no data for baseline event 1 (n = 34) and bad channel data (n = 78)
Summary
Universal primary education is regarded as the key to the successful development and prosperity of future generations. Use of artificial intelligence on Electroencephalogram (EEG) waveforms (UiB), Norway to the Centre for Intervention Science in Maternal and Child Health (CISMAC; Project No 223269)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.