Abstract

Frailty syndrome (FS) is one of the most common noncommunicable diseases, which is associated with lower physical and mental capacities in older adults. FS diagnosis is mostly focused on biological variables; however, it is likely that this diagnosis could fail owing to the high biological variability in this syndrome. Therefore, artificial intelligence (AI) could be a potential strategy to identify and diagnose this complex and multifactorial geriatric syndrome. The objective of this scoping review was to analyze the existing scientific evidence on the use of AI for the identification and diagnosis of FS in older adults, as well as to identify which model provides enhanced accuracy, sensitivity, specificity, and area under the curve (AUC). A search was conducted using PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines on various databases: PubMed, Web of Science, Scopus, and Google Scholar. The search strategy followed Population/Problem, Intervention, Comparison, and Outcome (PICO) criteria with the population being older adults; intervention being AI; comparison being compared or not to other diagnostic methods; and outcome being FS with reported sensitivity, specificity, accuracy, or AUC values. The results were synthesized through information extraction and are presented in tables. We identified 26 studies that met the inclusion criteria, 6 of which had a data set over 2000 and 3 with data sets below 100. Machine learning was the most widely used type of AI, employed in 18 studies. Moreover, of the 26 included studies, 9 used clinical data, with clinical histories being the most frequently used data type in this category. The remaining 17 studies used nonclinical data, most frequently involving activity monitoring using an inertial sensor in clinical and nonclinical contexts. Regarding the performance of each AI model, 10 studies achieved a value of precision, sensitivity, specificity, or AUC ≥90. The findings of this scoping review clarify the overall status of recent studies using AI to identify and diagnose FS. Moreover, the findings show that the combined use of AI using clinical data along with nonclinical information such as the kinematics of inertial sensors that monitor activities in a nonclinical context could be an appropriate tool for the identification and diagnosis of FS. Nevertheless, some possible limitations of the evidence included in the review could be small sample sizes, heterogeneity of study designs, and lack of standardization in the AI models and diagnostic criteria used across studies. Future research is needed to validate AI systems with diverse data sources for diagnosing FS. AI should be used as a decision support tool for identifying FS, with data quality and privacy addressed, and the tool should be regularly monitored for performance after being integrated in clinical practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.