Abstract

In the present paper, an automated online preconcentration system based on the use of two knotted reactors (KR) was developed for Mn determination in tea samples by flame atomic absorption spectrometry (F AAS). The system automation was performed by using four solenoid valves to switch sample streams and reagents. Valves were driven electronically by an integrated Darlington transistor circuit and controlled by an open-source Arduino hardware platform written in C language. The preconcentration was based on the precipitation process of metal ions complexed with 2-(5-bromo-2-pyridylazo)-5-(diethylamino)phenol (5-Br-PADAP) on the inner walls of the reactor, followed by elution with a solution of hydrochloric acid. The optimized system allowed the Mn determination with limit of detection (LOD) of 2.1 mg L-1, precision (relative standard deviation (RSD), 50.0 mg L-1) of 2.6% and enrichment factors of 8. The system presented a sampling frequency of 60 h-1. The method accuracy was evaluated by analysis of the certified reference material (CRM) apple leaves (NIST 1515) and by addition/recovery tests obtaining recoveries between 95.2 to 119%. This method was applied in the Mn determination in commercial tea samples purchased from local trade. Manganese levels were found in a concentration range of 2.95 to 123 µg g-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.