Abstract
AbstractThe predictability of models describing long-term nuclear glass behavior in a geological repository can be tested by means of natural or archaeological analogs. This study covers fractured archaeological glass blocks from a shipwreck discovered near the Mediterranean island of Embiez (France). The blocks were examined mainly because of their morphological analogy with nuclear glasses. Fractured after production (as in the case of nuclear glass), these blocks had been leached for 1800 years in seawater. The laboratory investigation led to the development and subsequent validation on archaeological objects of a geochemical model capable of accurately simulating the coupling between chemistry and transport to account for the alteration state of the cracks according to their geometric characteristics. Laboratory experiments allowed us to determine the kinetic and thermodynamic parameters for modeling glass alteration. The model was then tested against short-term experiments before simulating the crack alteration over 1800 years. We show that cracks in the outer regions of the block are the most severely altered because of rapid solution renewal, whereas internal cracks are very slightly altered because of a rate-limiting effect of water transport due to the formation of secondary phases. This study also establishes a direct link between data obtained at lab scale and the long-term evolution of a complex system in a natural environment, indicating that the key phenomena have been identified experimentally. The analogous behavior of archaeological and nuclear glass during leaching experiments and the similarities in their crack networks allow us to consider applying the model to nuclear glasses under geological repository conditions. This study clearly shows that the internal crack network does not play a major role in the overall long-term alteration of archeological glass blocks. The issue of the transposition studies will be to determine whether this conclusion can be generalized to nuclear glasses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.