Abstract
The emergence of the new coronavirus and its associated fatalities are growing at an alarming rate causing unprecedented losses worldwide. As the coronavirus disease 2019 pandemic accelerates in India, access to basic personal protective wear such as masks for health-care workers and for the general public is a key concern. Aerosol transmission of biological particles such as viruses is only one of several routes of exposure for contagion of which personal protection such as masks must be used by the general public. The protection level offered by N95 and surgical masks is defined by the percent of ambient particles penetrating across the protective mask. Recent interventions in nanotechnology have effectuated need-based virus resistance masks developed by impregnating nanomaterials or nanocoatings in the mask to combat the virus and augment protection levels. The aim of this review will be to highlight the coherent strategies of using versatile nanomaterials as an effective antiviral material coated onto masks and understanding the mechanism of “virus-nanoparticle” interaction. This viricidal effect is made possible by the use of functionalized nanoparticles through the addition of biomolecule covers or modified surfaces capable of interacting with active sites present on the membrane (capsid) allowing the virus to be deactivated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Health & Allied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.