Abstract

Discovery of gene function requires inactivation in order to demonstrate the effect of the absence of gene expression on cell phenotype. As gene inactivation can be lethal, such mutations are often unattainable. Antisense RNA provides a method of reducing transcript and protein levels without totally inactivating the targeted gene, thus providing information on the gene's possible function. This study demonstrates the use of antisense RNA to modulate polysaccharide size in Lactobacillus rhamnosus, a bacterial species with technological and health applications in fermented milk products. Production of antisense RNA coding for a glycosyltransferase leads to reduced sense RNA transcript. While the total amount of polysaccharide produced was not significantly affected, size exclusion chromatography showed that polysaccharides of different molecular mass were produced in the presence of antisense RNA. Conditional control over gene expression could thus be useful for metabolic engineering strategies, where gene inactivation is not practicable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.