Abstract

Norte de Santander is a region in Colombia with a high incidence of dengue virus (DENV). In this study, we examined the serum concentration of anti-Aedes salivary gland extract (SGE) antibodies as a biomarker of DENV infection and transmission, and assessed the duration of anti-SGE antibody concentration after exposure to the vector ceased. We also determined whether SGE antibody concentration could differentiate between positive and negative DENV infected individuals and whether there are differences in exposure for each DENV serotype. We observed a significant decrease in the concentration of IgG antibodies at least 40 days after returning to an “Ae. aegypti-free” area. In addition, we found significantly higher anti-SGE IgG concentrations in DENV positive patients with some difference in exposure to mosquito bites among DENV serotypes. We conclude that the concentration of IgG antibodies against SGE is an accurate indicator of risk of dengue virus transmission and disease presence.

Highlights

  • In order to be transmitted, arboviruses need to infect the arthropod salivary glands and be secreted into the saliva

  • Colombia is endemic for all four dengue virus (DENV) serotypes (DENV1, DENV2, DENV3, DENV4), with more than 90,000 cases of dengue cases reported in the territory by June of 2010, approximately 7,000 of which progressed to severe disease [8]

  • Regarding salivary gland extract (SGE)-antibody concentrations, we found that these concentrations were significantly higher in DENV(+) individuals (n = 47) than in DENV(2) individuals (n = 80) (Mann-Whitney test, p = 0.0005) (Figure 2); Odd ratios showed that a person is 2.5 times more likely to be actively infected with DENV if the IgG concentrations of anti-Ae. aegypti SGE are high (95%CI: 1.1277– 5.5409, p = 0.0289)

Read more

Summary

Introduction

In order to be transmitted, arboviruses need to infect the arthropod salivary glands and be secreted into the saliva. Previous evidence has shown that the presence of saliva at the virus inoculation site may enhance or impair the establishment of infection [3], suggesting that the salivary proteins themselves play a role in the transmission of vector borne diseases. It has been shown that people living in malaria endemic areas presented higher IgG and IgM antibody concentration against the salivary proteins of the major vectors than people living in nonendemic regions, showing a positive correlation between antibody reactivity to vector saliva and disease transmission [4,5]. Norte de Santander is one of the regions with a high DENV index within Colombia [9] In this region, more than 4,000 total cases of DENV were reported, 700 of which were severe cases [9]. Since no vaccine is currently available for DENV, control of the DENV vector, Aedes aegypti (Ae. aegypti), remains one of the main mitigation strategies [10]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.