Abstract

BackgroundNon-specific low back pain (LBP) has been one of the most frequently occurring musculoskeletal problems. Impairment in the mechanical stability of the lumbar spine has been known to lower the safety margin of the spine musculature and can result in the occurrence of pain symptoms of the low back area. Previously, changes in spinal stability have been identified by investigating recruitment patterns of low back and abdominal muscles in laboratory experiments with controlled postures and physical activities that were hard to conduct in daily life. The main objective of this study was to explore the possibility of developing a reliable spine stability assessment method using surface electromyography (EMG) of the low back and abdominal muscles in common physical activities.MethodsTwenty asymptomatic young participants conducted normal walking, plank, and isometric back extension activities prior to and immediately after maintaining a 10-min static upper body deep flexion on a flat bed. EMG data of the erector spinae, external oblique, and rectus abdominals were collected bilaterally, and their mean normalized amplitude values were compared between before and after the static deep flexion. Changes in the amplitude and co-contraction ratio values were evaluated to understand how muscle recruitment patterns have changed after the static deep flexion.ResultsMean normalized amplitude of antagonist muscles (erector spinae muscles while conducting plank; external oblique and rectus abdominal muscles while conducting isometric back extension) decreased significantly (P < 0.05) after the 10-min static deep flexion. Normalized amplitude of agonist muscles did not vary significantly after deep flexion.ConclusionsResults of this study suggest the possibility of using surface EMG in the evaluation of spinal stability and low back health status in simple exercise postures that can be done in non-laboratory settings. Specifically, amplitude of antagonist muscles was found to be more sensitive than agonist muscles in identifying changes in the spinal stability associated with the 10-min static deep flexion. Further research with various loading conditions and physical activities need to be performed to improve the reliability and utility of the findings of the current study.

Highlights

  • Non-specific low back pain (LBP) has been one of the most frequently occurring musculoskeletal problems

  • Mean normalized EMG (NEMG) of the lumbar erector spinae muscles and the abdominal muscles decreased after the 10-min deep flexion in general, but statistically significant (P < 0.05) decrements were found only from antagonist muscles in the plank and isometric back extension exercises (Figure 3)

  • In this study, it was found that the amount of muscle activation of the lumbar erector spinae muscles and the abdominal muscles while performing isometric contraction activities could vary after 10-min static deep flexion, and the difference was more pronounced for the antagonist muscles in plank and isometric back extension exercises

Read more

Summary

Introduction

Non-specific low back pain (LBP) has been one of the most frequently occurring musculoskeletal problems. Impairment in the mechanical stability of the lumbar spine has been known to lower the safety margin of the spine musculature and can result in the occurrence of pain symptoms of the low back area. It is difficult to identify causal factors and injury mechanisms of the non-specific LBP, it is commonly accepted that the impairment in the mechanical stability of the lumbar spine musculature can influence muscle. Risk factors that are known to damage the stability include acute inflammation of spinal ligaments [7], reduced stiffness of passive tissues due to prolonged or repetitive stooped posture [8,9], and fatigue development of the low back muscles [10].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call