Abstract
The slow kinetics in the photocatalytic reduction of CO2, as well as the low quantum efficiencies achieved, directly related to the photocatalyst and reactor configuration applied, limit the widespread use of this technology. In light of this, the main objective of this work is to evaluate the continuous photocatalytic conversion of CO2 into methanol in an optofluidic microreactor (with enhanced mass transport, large volume/active area ratio and uniform light distribution) using Cu nanoparticles synthesized in the hydrophilic 3-methyl-n-butylimidazolium tetrafluoroborate (BMIm.BF4) ionic liquid and embedded in TiO2 (P25). The ionic liquid not only acts as a template to control the size of the nanoparticles but also as a stabilizing agent. The analysis includes the effect of structural parameters of the photoactive layer such as Cu content (from 0.8 to 6.8 wt%) and photocatalyst loading (0.5–3 mg·cm−2), as well as operating variables such as UV and visible light intensities (2.5–10 mW·cm−2) and cell configuration (i.e. one or two compartments). The maximum methanol yield reached from the continuous transformation of CO2 is r = 230.3 µmol∙g−1∙h−1 at 2 wt% Cu content, photocatalyst loading of 2 mg·cm−2, UV light intensity of 10 mW·cm−2 and a two-compartment microreactor configuration. This result outperforms the values previously reported for Cu/TiO2-based systems using optofluidic microreactors, as well as most of those in common CO2 photoreactors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.