Abstract

Pharmacokinetic (PK) and exposure-response modeling of a selective sphingosine 1-phosphate receptor-1 modulator (CS-0777) was conducted in an iterative process to guide early clinical development decisions. A model based on preclinical data from monkeys was extrapolated to humans to support a single ascending dose (SAD) study. The model was updated after each cohort, providing guidance on both maximal inhibition and time to recovery for lymphocyte counts. A 2-compartment PK model with first-order absorption and elimination was found to describe the monkey and human datasets. The relationship between lymphocyte counts and active metabolite (M-1) concentrations was modeled via an indirect response model, whereby M-1 inhibited the reentry of lymphocytes to the circulation. The indirect-response model based on SAD data had an Imax of approximately 85% and an IC50 of 0.24 ng/mL. Additionally, based on SAD data, similar models were developed for lymphocyte subsets, including CD4 cells. Subsequently, simulations were utilized to design a multiple ascending dose study with adaptive dosing regimens that would meet targeted pharmacodynamic (PD) response thresholds (eg, minimum 40% reduction in lymphocytes) while maintaining CD4 counts above a reasonable safety threshold. In conclusion, model-based development and use of adaptive designs for dose optimization can reduce the time and number of subjects needed in early clinical development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.