Abstract

The Idealized-Firebrand Ignition Test (I-FIT) protocol was used to evaluate the piloted ignition delay times of fuel beds composed of leaves of Eucalyptus globulus (Labill.). The amount of fuel layer used for evaluation ranged between the fraction volume (α) of 0.03 to 0.07 which are values expected to be found in forest bed fuels. A theoretical model was developed to describe the heating and ignition of the fuel beds, based on the thermal ignition theory. The model, which was originally developed for pine needle beds, considers the penetration of radiation to the porous matrix. The model is able to accurately predict the ignition delay time for different values of α, but shows a poorer accuracy for the temperature evolution. This is explained by the large variability observed for the Eucalyptus leaves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.