Abstract

In this communication, a feed-forward artificial neural network algorithm is developed to estimate the hydrate dissociation conditions for the hydrogen+water and hydrogen+tetra-n-butyl ammonium bromide+water systems. To develop this algorithm, the experimental data reported in the literature for hydrate dissociation conditions of the latter two systems with different concentrations of tetra-n-butyl ammonium bromide in aqueous phase below its stoichiometric concentration (i.e., ≈0.037 mole fraction or 0.43 mass fraction) have been used. Independent experimental data (not used in training and developing this algorithm) have been employed to examine the reliability of this method. It is shown that the predicted and the experimental data are in acceptable agreement demonstrating the reliability of this algorithm as a predictive tool.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.