Abstract
BackgroundPineapple is the third most important tropical fruit produced worldwide, and approximately 24.8 million tons of this fruit are produced annually throughout the world, including in Thailand, which is the fourth largest pineapple producer in the world. Pineapple wastes (peel and core) are generated in a large amount equal to approximately 59.36% based on raw material. In general, the anaerobic digestion of pineapple wastes is associated with a high biochemical oxygen demand and high chemical oxygen demand, and this process generates methane and can cause greenhouse gas emissions if good waste management practices are not enforced. This study aims to fill the research gap by examining the feasibility of pineapple wastes for promoting the high-value-added production of biodegradable polyhydroxybutyrate (PHB) from the available domestic raw materials. The objective of this study was to use agro-industrial residue from the canned pineapple industry for biodegradable PHB production.ResultsThe results indicated that pretreatment with an alkaline reagent is not necessary. Pineapple core was sized to − 20/+ 40 mesh particle and then hydrolyzed with 1.5% (v/v) H2SO4 produced the highest concentration of fermentable sugars, equal to 0.81 g/g dry pineapple core, whereas pineapple core with a + 20 mesh particle size and hydrolyzed with 1.5% (v/v) H3PO4 yielded the highest concentration of PHB substrates (57.2 ± 1.0 g/L). The production of PHB from core hydrolysate totaled 35.6 ± 0.1% (w/w) PHB content and 5.88 ± 0.25 g/L cell dry weight. The use of crude aqueous extract (CAE) of pineapple waste products (peel and core) as a culture medium was investigated. CAE showed very promising results, producing the highest PHB content of 60.00 ± 0.5% (w/w), a cell dry weight of 13.6 ± 0.2 g/L, a yield (Y_{{{P mathord{left/ {vphantom {P S}} right. kern-0pt} S}}}) of 0.45 g PHB/g PHB substrate, and a productivity of 0.160 g/(L h).ConclusionsThis study demonstrated the feasibility of utilizing pineapple waste products from the canned pineapple industry as lignocellulosic feedstocks for PHB production. C. necator strain A-04 was able to grow on various sugars and tolerate levulinic acid and 5-hydroxymethyl furfural, and a detoxification step was not required prior to the conversion of cellulose hydrolysate to PHB. In addition to acid hydrolysis, CAE was identified as a potential carbon source and offers a novel method for the low-cost production of PHB from a realistic lignocellulosic biomass feedstock.
Highlights
Pineapple is the third most important tropical fruit produced worldwide, and approximately 24.8 million tons of this fruit are produced annually throughout the world, including in Thailand, which is the fourth largest pineapple producer in the world
This transition from simple reducing sugars to alternative renewable raw materials, which have complex structures and require additional procedures, encouraged us to develop simple, economic, and effective processes for the conversion of lignocellulosic biomass, the agro-industrial residue that is abundant in the Southeast Asian region, to fermentable sugars
The sugar composition of crude aqueous extract (CAE) was analyzed by HPLC and found to consist of 20.14 g/L sucrose, 24.48 g/L glucose, 2.78 g/L fructose, and 0.30 g/L galactose
Summary
Pineapple is the third most important tropical fruit produced worldwide, and approximately 24.8 million tons of this fruit are produced annually throughout the world, including in Thailand, which is the fourth largest pineapple producer in the world. This study aims to fill the research gap by examining the feasibility of pineapple wastes for promoting the high-value-added production of biodegradable polyhydroxybutyrate (PHB) from the available domestic raw materials. The current trends and challenges regarding sustainability in industrial biotechnology have stimulated the development of renewable feedstocks that are not sources of food or feed [1]. This transition from simple reducing sugars to alternative renewable raw materials, which have complex structures and require additional procedures, encouraged us to develop simple, economic, and effective processes for the conversion of lignocellulosic biomass, the agro-industrial residue that is abundant in the Southeast Asian region, to fermentable sugars. The increasing demand for alternative and renewable raw materials and the use of biodegradable polymers, along with the awareness and promotion of green procurement policies, are motivations expected to benefit the market growth of PHAs
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.