Abstract

Hardness is defined as the resistance of a material to localized plastic deformation. Owing to their non-destructive nature, static indentation hardness tests are widely used in industry. Hardness testing is particularly useful for the mechanical characterization of materials that cannot be tested otherwise, e.g. powdered materials. In this study, challenges related to Vickers microindentation hardness testing of hard brittle cast tungsten carbide (CTC) powders were extensively investigated. Test load was optimized to obtain sufficiently large crack-free indentations allowing for precise measurement of the diagonal lengths. The influence of the operator and imaging technique on the measured hardness value was evaluated. Topography of residual imprints was investigated using atomic force microscopy (AFM) and a systematic and operator bias-free method to locate the indentation vertexes was developed. Results suggested that measurement variability introduced by AFM scanning and post-processing was as low as 3.1% and 1.3% with respect to the mean hardness value, respectively. Since the variability due to the measuring system can be isolated, the homogeneity of powders can be reliably evaluated from the hardness measurements thus obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call