Abstract

Several series of N6- or 8-substituted derivatives of adenosine 5'-triphosphate (ATP) were synthesized. N6-(omega-Aminoalkyl) derivatives of adenosine 5'-monophosphate (AMP) were converted into their omega-N-carbobenzyloxy derivatives, and these were converted, via the 2',3'-O-carbonyl derivatives of their 5'-phosphorimidazolidates, into the corresponding ATP derivatives. Hydrogenolytic removal of the carbobenzyloxy groups, followed by iodoacetylation of the omega-amino groups with N-(iodoacetoxy)succinimide, gave N6-R-ATP, where R = (CH2)nNHCOCH2I (n = 2--8) or (CH2)nCON)CH3)(CH2)mN(CH3)CO(CH2)nNHCOCH2I (n = m = 3; n = 3, m = 4; n = 4, m = 3; n = m = 4). Condensation of N6-(omega-aminoalkyl) derivatives of AMP with N-hydroxysuccinimide esters of omega-[N-(carbobenzyloxy)amino] carboxylic acids gave N6-(CH2)nNHCO(CH2)mNH-Cbz derivatives of AMP which, upon conversion to the corresponding derivatives of ATP, followed by removal of the carbobenzyloxy group and iodoacetylation, as described above, gave N6-(CH2)nNHCO(CH2)mNHCOCH2I-ATP derivatives (n = 3, m = 5 or 6; n = 4, m = 5; n = 6, m = 1--6). The same sequence of reactions starting with N6-[omega-(methylamino)alkyl] derivatives of N6-CH3-AMP gave N6-CH3, N6-(CH2)nH(CH3)CO(CH2)mNHCOCH2I derivatives of ATP (n = 4, m = 3, 5 or 6; n = 6, m = 5 or 6). Reaction of alpha, omega-diaminoalkanes with 8-Br-ATP gave 8-NH(CH2)nNH2 derivatives of ATP, which upon iodoacetylation gave 8-NH(CH2)nNHCOCH2I derivatives of ATP (n = 2, 4, 6, or 8). Substrate and inhibitor properties indicated that the ATP derivatives are potential exco-ATP-site-directed inactivators of hexokinases, adenylate kinases, and pyruvate kinases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call