Abstract

Omega-3 polyunsaturated fatty acids (n-3 PUFAs) play an important role in the development, maintenance, and function of the brain. Dietary supplementation of n-3 PUFAs in neurological diseases has been a subject of particular interest in preventing cognitive deficits, and particularly in age-related neurodegeneration. Developing strategies for the efficient delivery of these lipids to the brain has presented a challenge in recent years. We recently reported the preparation of n-3 PUFA-rich nanoliposomes (NLs) from salmon lecithin, and demonstrated their neurotrophic effects in rat embryo cortical neurons. The objective of this study was to assess the ability of these NLs to deliver PUFAs in cellulo and in vivo (in mice). NLs were prepared using salmon lecithin rich in n-3 PUFAs (29.13%), and characterized with an average size of 107.90 ± 0.35 nm, a polydispersity index of 0.25 ± 0.01, and a negative particle-surface electrical charge (−50.4 ± 0.2 mV). Incubation of rat embryo cortical neurons with NLs led to a significant increase in docosahexaenoic acid (DHA) (51.5%, p < 0.01), as well as palmitic acid, and a small decrease in oleic acid after 72 h (12.2%, p < 0.05). Twenty mice on a standard diet received oral administration of NLs (12 mg/mouse/day; 5 days per week) for 8 weeks. Fatty acid profiles obtained via gas chromatography revealed significant increases in cortical levels of saturated, monounsaturated, and n-3 (docosahexaenoic acid,) and n-6 (docosapentaenoic acid and arachidonic acid) PUFAs. This was not the case for the hippocampus or in the liver. There were no effects on plasma lipid levels, and daily monitoring confirmed NL biocompatibility. These results demonstrate that NLs can be used for delivery of PUFAs to the brain. This study opens new research possibilities in the development of preventive as well as therapeutic strategies for age-related neurodegeneration.

Highlights

  • IntroductionLipids are a heterogeneous group of hydrophobic or amphiphilic molecules, and play an important role in all cell types in mammals

  • Salmon lecithin contained relatively equivalent amounts of PUFAs, MUFAs, and SFAs, similar to what was reported previously for lecithin derived from salmon head byproducts [45]

  • By virtue of the origin and green extraction methods used to obtain salmon lecithin, these NLs are low in toxicity, and biocompatible in vivo

Read more

Summary

Introduction

Lipids are a heterogeneous group of hydrophobic or amphiphilic molecules, and play an important role in all cell types in mammals. They contribute to the production and storage of energy; serve as building blocks of cell membranes, thereby influencing their fluidity and function; and participate in biological processes, including gene transcription, and the regulation of vital metabolic pathways and physiological responses [1,2,3]. DHA and AA represent 13–22% and 5–11% of brain phospholipids, respectively [6].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call