Abstract

In the present study, biomass from the Chromolaena odorata plant's stem was activated using sulfuric acid to adsorb crystal violet (CV) dye. The adsorption operation of CV dye was studied considering the effect of variables like pH, initial dye concentration, time, adsorbent dosage, and temperature. The pseudo-second-order equation best fitted the kinetic study. The thermodynamic parameters such as activation energy (9.56 kJ/mol), change in Gibbs energy (81.43 to 96.7 kJ/mol), enthalpy change (6.89 kJ/mol), and entropy change (-254.4 J/mol K) were calculated. Response surface methodology estimated thatat pH (4.902), adsorbent dosage (8.33 g/L), dye concentration (82.30 ppm), and temperature (300.13 K) dye removal of 97.53% is possible. FTIR, SEM, XRD, BJH, and BET confirmed adsorption operation. The adsorbent can be reused for 3 cycles effectively. Langmuir isotherm which best fitted the adsorption operation was used for designing a theoretical single-stage batch adsorber for large-scale operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.