Abstract
This paper reports the use of different proportions of vanadium nanostructured electrocatalysts for H2O2 electrogeneration. A comparative study using different mass proportions of vanadium (1%, 6%, 12%, 15% and 20%) was performed to produce H2O2. The V/C materials were prepared by a modified polymeric precursor method (PPM) and characterized by X-ray diffraction and transmission electron microscopy (TEM) analysis. XRD results identified different phases comprising V2O5 and VO2 while TEM micrographs show the vanadium nanoparticles in the range of 1–3nm. The rotating ring–disk electrode (RRDE) technique was used to evaluate the kinetics of the oxygen reduction reaction (ORR). The results showed that the 12% V/C prepared by the PPM was the best composite among those investigated for the production of H2O2 in a 1molL−1 NaOH electrolyte solution because this electrocatalyst exhibited a H2O2 conversion efficiency of 68%. The ring current obtained with 12% V/C was greater than the obtained with Vulcan carbon, which was used as a reference material for H2O2 production and exhibited an efficiency of 31%. After the study with the RRDE, gas-diffusion electrodes (GDEs) containing the catalyst were used to evaluate the amount of H2O2 produced during exhaustive electrolysis. On the basis of these results, the 12% V/C GDE produced 620mgL−1 of H2O2 in alkaline media, whereas the Vulcan carbon GDE produced only 369mgL−1 at the same potential. In acidic media, the 12% V/C GDE produced 107mgL−1 of H2O2, whereas Vulcan carbon produced only 72mgL−1 at the same potential, indicating the better activity of V/C for H2O2 electrogeneration. The 12% V/C is composed primarily of the V2O5 phase, which shows acidic character that can increase the acidity of the surface, providing greater hydrophilicity and, consequently, greater activity toward the ORR via two-electron transference.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.