Abstract

Solid-phase peptide synthesis has been refined to a stage where efficient preparation of long and complex peptides is now achievable. However, the postsynthesis handling of poorly soluble peptides often remains a significant hindrance to their purification and further use. Several synthetic schemes have been developed for the preparation of such peptides containing modifications to aid their solubility. However, these require the use of complex chemistry or yield non-native sequences. We describe a simple approach based on the use of penta-lysine "tags" that are linked to the C-terminus of the peptide of interest via a base-labile linker. After ready purification of the now freely solubilized peptide, the "tag" is removed by simple, brief base treatment giving the native sequence in much higher overall yield. The applicability of the method was demonstrated by the novel preparation of insulin glargine via solid-phase synthesis of each of the two chains--including the notoriously poorly soluble A-chain--followed by their combination in solution via regioselective disulfide bond formation. At the conclusion of the chain combination, the solubilizing peptide tag was removed from the A-chain to provide synthetic human glargine in nearly 10% overall yield. This approach should facilitate the development of new insulin analogues as well as be widely applicable to the improved purification and acquisition of otherwise poorly soluble synthetic peptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.