Abstract

A novel surfactant-enhanced aquifer remediation technology, density-modified displacement (DMD), has been developed to minimize risk of dense non-aqueous-phase liquid (DNAPL) downward migration during displacement floods. The DMD method is designed to be implemented using horizontal flushing schemes, with in situ DNAPL density conversion accomplished by the introduction of a partitioning alcohol (e.g., 1-butanol) in a predisplacement flood (preflood). Subsequent NAPL displacement and recovery is achieved by flushing with a low-interfacial-tension (low-IFT) surfactant solution. The efficiency of the DMD method may be enhanced for heavier DNAPLs, such as trichloroethene (TCE), by increasing alcohol delivery and the extent of partitioning during the preflood. The objective of this study was to evaluate the use of a macroemulsion, consisting of 4.7% (vol) Tween 80 + 1.3% (vol) Span 80 + 15% (vol) 1-butanol to achieve efficient in situ density conversion of TCE (relative to that obtained with use of an aqueous preflood solution) prior to low-IFT displacement and recovery from a two-dimensional aquifer cell. The cell was configured to represent a heterogeneous unconfined aquifer system with an overall NAPL saturation between 2% and 3%. After flooding with approximately 1.2 pore volumes of the macroemulsion, a low-IFT solution consisting of 10% (vol) Aerosol MA + 6% (vol) 1-butanol + 15 g/L NaCl + 1 g/L CaCl2 was introduced to displace and recover NAPL. Visual observations and quantitative measurements of effluent fluids demonstrated that in situ density conversion and displacement of TCE-NAPL was successful, with effluent NAPL densities ranging from 0.97 to 0.99 g/mL. For the experimental system employed herein, 93% recovery of the introduced TCE mass was realized after flushing with a combined 2.4 pore volumes of the density conversion and low-IFT solutions. These results demonstrate the increased efficiency of the DMD method when surfactant-based emulsions are used to enhance 1-butanol delivery and partitioning behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.