Abstract
The seawater pH measurement is usually quite complicated because that matrix is characterized by a high ionic strength leading to calibration errors if NIST standards are used. For this matrix, different pH scales like the “total hydrogen ion concentration scale” (TOT) and the “seawater scale” (SWS), are defined, and suitable synthetic seawater solutions must be prepared according to standard procedures to calibrate the glass electrode. This work provides a new approach to make seawater pH measurements by using the glass electrode calibrated with the NIST standards (pHNIST) converting the pHNIST into the right TOT or SWS scales by using empirical equations derived from theoretical thermodynamic data: pHTOT=pHNIST+0.10383+4.33⋅10−5TS+3.633⋅10−5T2−4.921⋅10−5S2, and pHSWS=pHNIST+0.097733+4.1059⋅10−5TS+3.5437⋅10−5T2−4.941⋅10−5S2, for the TOT and SWS scales, respectively. These equations are functions of two simple experimental parameters, namely, T = temperature (°C) and S = salinity (PSU, (g/L), Practical Salinity Units). These equations were experimentally validated and the uncertainty of pHTOT and pHSWS was demonstrated to have no statistical difference with the corresponding values obtained following the standard operative procedure (SOP) using commercially unavailable seawater-like buffers. The proposed method has therefore the same performances and it is largely preferable as it avoids long and tedious procedures of the synthetic seawater preparations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.