Abstract
Optimizing heat transfer during the charge and discharge of thermal stores is crucial for high performance of solar thermal systems for domestic and commercial applications. This study models a sensible water storage tank for which charge and discharge are accomplished using a heat exchanger immersed in the storage fluid. The objective is to investigate the use of a baffle and shroud as a means to improve convective heat transfer and thermal stratification. The immersed heat exchanger is modeled as a two-dimensional isothermal cylinder which is situated near the top of a storage tank with adiabatic walls. Transient numerical simulations of the discharge process are obtained for 105 < RaD < 107. An adiabatic shroud and baffle whose geometry is parametrically varied is placed around and below the cylinder. Transient Nusselt numbers are calculated for different baffle-shroud geometries and Rayleigh numbers. Results indicate that a long baffle with a high shroud height is optimal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.