Abstract

In the nematode Caenorhabditis elegans, spermatogenesis represents one of two alternative developmental pathways open to premeiotic germ cells. At least two genes, fem-1 and fem-2, control the initiation of spermatogenesis in XX (hermaphrodite) worms, and the entire spectrum of male differentiation in XO animals. Low-dose irradiation of worms treated with the light-activated DNA crosslinking drug trimethylpsoralen, at levels that do not affect cell division or growth rates, blocks spermatogenesis in C. elegans hermaphrodites and produces an identical phenotype to that of temperature-sensitive mutations in the fem genes. Psoralen treatment does not, however, produce corresponding phenotypes of these mutants in XO animals. The developmental age for phenocopy production is the same as the hermaphrodite temperature-sensitive period of the two mutants. The effects of pulses of restrictive temperature and psoralen treatment on fem-2 mutant hermaphrodites are additive, suggesting that psoralen crosslinking may reduce the level of the fem-2 gene product. Microbeam experiments localize the target for the psoralen effect to the primary germ cells in the first stage larvae, indicating that a critical step occurs in a small number of precursor cells prior to their commitment to spermatogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.