Abstract

Background Naturally occurring chromatin modifying elements such as MAR, UCOE or cHS4 were identified from the genome of higher eukaryotes. It is well documented that the presence of these regulatory elements leads to better recruitment of transcriptional machinery and/or prevents epigenetic silencing mechanisms [1,2]. The goal of this work was the evaluation of a new genetic element to improve transgene expression, from the flanking sequences of the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene, which is a ubiquitously expressed enzyme. It was hypothesized that the surrounding genetic environment of the gene may lead to a DNA structure favorable for transgene expression in eukaryotes. In this study, we have investigated the effect on stable and transient expression in CHO and HEK293 cells of the 3.2 kilo base pairs (kb) sequences flanking upstream (5’) and downstream (3’) the GAPDH locus.

Highlights

  • Occurring chromatin modifying elements such as MAR, UCOE or cHS4 were identified from the genome of higher eukaryotes

  • A significant increase in transient expression was obtained with the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) plasmids in both host cell lines for both constructs

  • Data demonstrated that the beneficial effect of the vector is solely due to the GAPDH flanking sequences and not the A and B modification

Read more

Summary

Introduction

Occurring chromatin modifying elements such as MAR, UCOE or cHS4 were identified from the genome of higher eukaryotes. It is well documented that the presence of these regulatory elements leads to better recruitment of transcriptional machinery and/or prevents epigenetic silencing mechanisms [1,2]. The goal of this work was the evaluation of a new genetic element to improve transgene expression, from the flanking sequences of the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene, which is a ubiquitously expressed enzyme. It was hypothesized that the surrounding genetic environment of the gene may lead to a DNA structure favorable for transgene expression in eukaryotes. We have investigated the effect on stable and transient expression in CHO and HEK293 cells of the 3.2 kilo base pairs (kb) sequences flanking upstream (5’) and downstream (3’) the GAPDH locus

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.