Abstract

A new pH indicator, seminaphthofluorescein (SNAFL)-calcein acetoxymethyl ester, was used for intracellular pH (pHi) measurement in living MDCK cells with a laser scanning confocal microscope (LSCM) equipped with an Argon/Krypton laser and dual-excitation and dual-emission (FITC/Texas Red) filter set. SNAFL-calcein excitation maxima are approximately 492/540 nm (acid/base) and emission maxima are approximately 535/625 nm (acid/base) with a pKa value at approximately 7.0. The absorption/emission spectra of SNAFL-calcein indicate that the ratio of emission intensities of its basic/acidic forms is pH dependent. With an Argon/Krypton LSCM, we were able to monitor the acidic and basic forms of this dye simultaneously using dual-excitation (488/568 nm) and dual-emission (525-614 nm/> or = 615 nm) wavelengths (lambda s). The simultaneous dual-excitation/emission LSCM system allows for efficient recording of pHi dynamics (time resolution approximately 1 sec) in living cells. We have analyzed emission stability of the dye at different temperatures (22 degrees C and 37 degrees C) and constant pH, and at the same temperature (22 degrees C) but various pHs (6.6, 7.0, and 7.4). Bleaching rate is slightly higher at 37 degree C than that at 22 degrees C. The basic form of the dye (lambda Em approximately 625 nm) has a slightly higher bleaching rate than the acidic form (lambda Em approximately 535 nm) in standard culture medium (pH 7.3) at either 22 degree C or 37 degrees C. The pHi in MDCK cells calculated from ratio images (535 nm/625 nm) was 7.19 +/- 0.03 (mean +/- SEM, n = 20). Calibration experiments show that the useful pH range of SNAFL-calcein appears to be between 6.2 and 7.8, as the dye is difficult to calibrate outside this pH range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.