Abstract

A modified alpha-N-acetylgalactosaminidase (NAGA) with alpha-galactosidase A (GLA)-like substrate specificity was designed on the basis of structural studies and was produced in Chinese hamster ovary cells. The enzyme acquired the ability to catalyze the degradation of 4-methylumbelliferyl-alpha-D-galactopyranoside. It retained the original NAGA's stability in plasma and N-glycans containing many mannose 6-phosphate (M6P) residues, which are advantageous for uptake by cells via M6P receptors. There was no immunological cross-reactivity between the modified NAGA and GLA, and the modified NAGA did not react to serum from a patient with Fabry disease recurrently treated with a recombinant GLA. The enzyme cleaved globotriaosylceramide (Gb3) accumulated in cultured fibroblasts from a patient with Fabry disease. Furthermore, like recombinant GLA proteins presently used for enzyme replacement therapy (ERT) for Fabry disease, the enzyme intravenously injected into Fabry model mice prevented Gb3 storage in the liver, kidneys, and heart and improved the pathological changes in these organs. Because this modified NAGA is hardly expected to cause an allergic reaction in Fabry disease patients, it is highly promising as a new and safe enzyme for ERT for Fabry disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.