Abstract

BackgroundIncreased concern for potential health and environmental impacts of chemicals, including nanomaterials, in consumer products is driving demand for greater transparency regarding potential risks. Chemical hazard assessment is a powerful tool to inform product design, development and procurement and has been integrated into alternative assessment frameworks. The extent to which assessment methods originally designed for conventionally-sized materials can be used for nanomaterials, which have size-dependent physical and chemical properties, have not been well established. We contracted with a certified GreenScreen profiler to conduct three GreenScreen hazard assessments, for conventional silver and two forms of nanosilver. The contractor summarized publicly available literature, and used defined GreenScreen hazard criteria and expert judgment to assign and report hazard classification levels, along with indications of confidence in those assignments. Where data were not available, a data gap (DG) was assigned. Using the individual endpoint scores, an aggregated benchmark score (BM) was applied.ResultsConventional silver and low-soluble nanosilver were assigned the highest possible hazard score and a silica-silver nanocomposite called AGS-20 could not be scored due to data gaps. AGS-20 is approved for use as antimicrobials by the US Environmental Protection Agency.ConclusionsAn existing method for chemical hazard assessment and communication can be used – with minor adaptations– to compare hazards across conventional and nano forms of a substance. The differences in data gaps and in hazard profiles support the argument that each silver form should be considered unique and subjected to hazard assessment to inform regulatory decisions and decisions about product design and development. A critical limitation of hazard assessments for nanomaterials is the lack of nano-specific hazard data – where data are available, we demonstrate that existing hazard assessment systems can work. The work is relevant for risk assessors and regulators. We recommend that regulatory agencies and others require more robust data sets on each novel nanomaterial before granting market approval.Electronic supplementary materialThe online version of this article (doi:10.1186/s12940-016-0188-y) contains supplementary material, which is available to authorized users.

Highlights

  • Increased concern for potential health and environmental impacts of chemicals, including nanomaterials, in consumer products is driving demand for greater transparency regarding potential risks

  • In consumer products: nanosilver in bedsheets and sports clothing to make them resistant to bad odors from bacteria and fungi; silica nanoparticles in rubber tires for reducing rolling resistance and in personal care products such as toothpaste for abrasiveness; carbon nanotubes add strength and decrease weight in golf clubs, kayaks, and archery arrows; nanoclays increase the bounce of tennis and golf balls; and, carbon nanotubes decrease resistance and increase grip on road racing tires [2, 3]

  • Conventional silver was assigned a benchmark score (BM) 1 based on very high persistence and very high aquatic toxicity as determined by standardized tests

Read more

Summary

Introduction

Increased concern for potential health and environmental impacts of chemicals, including nanomaterials, in consumer products is driving demand for greater transparency regarding potential risks. Chemical hazard assessment is a powerful tool to inform product design, development and procurement and has been integrated into alternative assessment frameworks. The extent to which assessment methods originally designed for conventionally-sized materials can be used for nanomaterials, which have size-dependent physical and chemical properties, have not been well established. Nanosilver is the most common nanomaterial in consumer products, including toothpaste, faces creams, cosmetics, medical bandages, disinfectants, kids' plush toys, baby blankets, towels, socks, kitchen utensils and insecticides [2, 4]. There is awareness and concern among consumers, retailers, manufacturers, researchers and regulators about the sustainability of nanomaterials used in consumer products including potential ecological and human health risks [5, 6]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.