Abstract

The development of new generations of propellants with better energetic properties may be hampered by unsatisfactory mechanical behaviors in terms of strength and toughness. A micromechanical approach is adopted to provide a better understanding of the existing links between the constitutive phase behaviors and the local damage, and the macroscopic mechanical behavior of these materials. Three model materials have been made and tested in uniaxial tension. The stress-strain responses were recorded while monitoring their volume changes that quantify the macroscopic damage. A qualitative description of the local damage was obtained thanks to scanning electron microscopy images of samples under loading. The micromechanical approach consists in finite elements analyses on periodic microstructures of non-regular polyhedral particles embedded in a soft matrix. An original microstructure generation tool has been developed specifically in order to obtain highly filled isotropic microstructures. Debonding at the matrix/filler interface was taken into account with a cohesive-zone model (CZM). The impact of the CZM parameters is discussed, in an effort to make the link between the CZM parameters and how the local damage appears and develops, and between the cohesive behavior and the shape of the macroscopic stress-stretch responses of the heterogeneous materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.