Abstract

We describe a new class of fluorescence polarization immunoassays based on the luminescence from a Re(I) metal-ligand complex. Re(I) complexes are extremely photostable and possess useful photophysical properties including long lifetimes, high quantum yields, and high emission polarization in the absence of rotational diffusion. In the present study, a conjugatable, highly luminescent Re(I) metal-ligand complex, [Re(bcp)(CO)3(4-COOHPy)](ClO4), where bcp is 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline and 4-COOHPy is isonicotinic acid, has been evaluated for use in fluorescence polarization immunoassays (FPIs) with high-molecular-weight antigens. This Re(I) complex (Re) displays highly polarized emission (with a maximum anisotropy near 0.3) in the absence of rotational diffusion and a long average lifetime (2.7 microseconds) when bound to human serum albumin (HSA) in oxygenated aqueous solution. The emission polarization of the Re-HSA conjugate is sensitive to the binding of anti-HSA, resulting in a significant increase in anisotropy. The labeled HSA was also used in a competition immunoassay where unlabeled HSA was also used as an antigen. These experimental results, combined with theoretical predictions, demonstrate the potential of this Re(I) metal-ligand complex as a luminescence probe in FPIs of high-molecular-weight analytes (10(5)-10(8) Da).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.