Abstract

In the metropolitan cities of developed and developing countries, longer journeys are mostly performed by two or more modes. In the event of availability of suburban trains and public buses, commuters prefer to travel a longer stretch of their journeys by train, so as to avoid traffic congestion on roads, and the remaining part by buses to reach local areas if their final destination is not in close proximity to railway stations. Normally suburban trains have fixed corridors and buses have the flexibility to serve remote local areas. Thus design of feeder routes from railway stations to various destinations and the transfer time from trains to buses plays a very important role and can be controlled by transport planners. A considerable amount of research has been done on the independent design of a bus route network without considering the effect of train services. Researchers have made attempts using heuristics, simulation, expert systems, artificial intelligence, and optimization techniques for design of routes and schedules. So far, limited effort has been made in modeling coordinated operations. In this research, a new hybrid algorithm which exploits the benefits of genetic algorithms and a well tested heuristic algorithm for the study area is discussed. More convincing results in terms of feeder routes and coordinated schedules at the selected railway station are obtained by the proposed hybrid algorithm as compared to earlier approaches adopted by the writers for the same study area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.