Abstract
Abstract The contribution of merging multiple-satellite altimeter missions to the mapping of sea level is analyzed from a North Atlantic high-resolution (1/10°) numerical simulation. The model is known to represent the mesoscale variability quite well and offers a unique opportunity for assessing the mapping capability of multiple-altimeter missions. Several existing or planned orbits [TOPEX/Poseidon (T/P), Jason-1, ERS-1/2–ENVISAT, GEOSAT-GFO] are analyzed, and Jason-1 and T/P orbits are assumed to be interleaved. The model sea level anomaly fields are first subsampled along T/P, ERS, GFO, and Jason-1 tracks and a random noise of 3-cm rms is added to the simulated altimeter data. A suboptimal mapping method is then used to reconstruct the 2D sea level anomaly from alongtrack data and the reconstructed fields are compared with the reference model fields. Comparisons are performed in the North Atlantic and over a complete year. These results confirm the main conclusions of the Le Traon and Dibarboure study...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.