Abstract

BackgroundAlthough quantitative analysis using standardized uptake value (SUV) becomes realistic in clinical single-photon emission computed tomography/computed tomography (SPECT/CT) imaging, reconstruction parameter settings can deliver different quantitative results among different SPECT/CT systems. This study aims to propose a use of the digital reference object (DRO), which is a National Electrical Manufacturers Association (NEMA) phantom-like object developed by the Quantitative Imaging Biomarker Alliance (QIBA) fluorodeoxyglucose-positron emission tomography technical committee, for the purpose of harmonizing SUVs in Tc-99m SPECT/CT imaging.MethodsThe NEMA body phantom with determined Tc-99m concentration was scanned with the four state-of-the-art SPECT/CT systems. SPECT data were reconstructed using different numbers of the product of subset and iteration numbers (SI) and the width of 3D Gaussian filter (3DGF). The mean (SUVmean), maximal (SUVmax), and peak (SUVpeak) SUVs for six hot spheres (10, 13, 17, 22, 28, and 37 mm) were measured after converting SPECT count into SUV using Becquerel calibration factor. DRO smoothed by 3DGF with a FWHM of 17 mm (DRO17 mm) was generated, and the corresponding SUVs were measured. The reconstruction condition to yield the lowest root mean square error (RMSE) of SUVmeans for all the spheres between DRO17 mm and actual phantom images was determined as the harmonized condition for each SPECT/CT scanner. Then, inter-scanner variability in all quantitative metrics was measured before (i.e., according to the manufacturers’ recommendation or the policies of their own departments) and after harmonization.ResultsRMSE was lowest in the following reconstruction conditions: SI of 100 and 3DGF of 13 mm for Brightview XCT, SI of 160 and 3DGF of 3 pixels for Discovery NM/CT, SI of 60 and 3DGF of 2 pixels for Infinia, and SI of 140 and 3DGF of 15 mm for Symbia. In pre-harmonized conditions, coefficient of variations (COVs) among the SPECT/CT systems were greater than 10% for all quantitative metrics in three of the spheres, SUVmax and SUVmean, in one of the spheres. In contrast, all metrics except SUVmax in the 17-mm sphere yielded less than 10% of COVs after harmonization.ConclusionsOur proposed method clearly reduced inter-scanner variability in SUVs. A digital phantom developed by QIBA would be useful for harmonizing SUVs in multicenter trials using SPECT/CT.

Highlights

  • Quantitative analysis using standardized uptake value (SUV) becomes realistic in clinical single-photon emission computed tomography/computed tomography (SPECT/CT) imaging, reconstruction parameter settings can deliver different quantitative results among different SPECT/CT systems

  • We propose a use of the digital reference object (DRO) smoothed by 3D Gaussian filter (3DGF) with a FWHM of 17 mm (DRO17 mm) for the purpose of harmonizing SUVs in Tc-99m SPECT/CT imaging

  • Determination of Tc-99m concentration in National Electrical Manufacturers Association (NEMA) phantom to simulate clinical Tc-99m SPECT/CT In order to determine Tc-99m concentration enclosed in the NEMA body phantom, the following procedure was performed; first, SPECT/CT scans using an integrated SPECT/CT system (Discovery NM/CT 670pro, GE Healthcare) equipped with a low-energy high-resolution collimator were performed in 28 cancer patients 3 h after intravenous injection of 740 MBq of Tc-99m hydroxymethylene diphosphonate (Tc-99m Hydroxymethylene diphosphonate (HMDP)) at one of the institutions participating in the present study

Read more

Summary

Introduction

Quantitative analysis using standardized uptake value (SUV) becomes realistic in clinical single-photon emission computed tomography/computed tomography (SPECT/CT) imaging, reconstruction parameter settings can deliver different quantitative results among different SPECT/CT systems. Physical quality of single-photon emission computed tomography/computed tomography (SPECT/CT) images such as image resolution and noise is worse than that of PET/CT images, recent studies suggested the possibility for the clinical application of quantitative SPECT/ CT [1,2,3]. Their study showed no significant differences in image quality when using their own algorithm, whereas image quality was different between images reconstructed with the vendors’ reconstruction software. These results seem to raise a problem with regard to the standardization of SPECT/CT quantitation among different nuclear medicine institutions

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call