Abstract

Sonographic calculation of thyroid volume is used in the diagnosis and follow-up of thyroid diseases. Since the calculated volume of thyroid lobes is highly influenced by the longest (ie, craniocaudal) diameter, we examined whether using a curved-array transducer as opposed to a linear-array transducer to measure the craniocaudal diameter would reduce interobserver variation. Three sonographers with different levels of expertise each used a 5-12-MHz linear-array transducer and a 2-5-MHz curved-array transducer to measure the craniocaudal diameter of both thyroid lobes of 25 healthy volunteers. On the basis of these measurements, thyroid lobe volumes were calculated. Single-factor analysis of variance was used to evaluate the interobserver variations between the measurements made by all 3 observers as well as between measurements taken by pairs of observers. A p value of less than 0.05 was considered significant. Using the linear-array transducer to measure the craniocaudal diameter resulted in significant interobserver variation in thyroid volume calculation (p = 0.02), whereas using the convex-array transducer did not. Using either transducer resulted in a highly significant interobserver variation in measurements of the craniocaudal diameter, although the variation was far more pronounced for measurements made with the linear-array transducer (p = 0.0005) than for those made with the curved-array transducer (p = 0.04). For both transducers, the interobserver variations were most pronounced between the most and the least experienced sonographers. To avoid significant interobserver variation in calculating thyroid lobe volume, we recommend using a curved-array transducer to measure the craniocaudal diameter of the thyroid lobes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call