Abstract
There is a need to evaluate nanoparticle (< 100 nm) exposures in occupational settings. However, portable instruments do not size segregate particles in that size range. A proxy method for determining nanoparticle count concentrations involves subtracting counts made with a condensation particle counter (CPC) from those of an optical particle counter/sizer (OPC), resulting in an estimation of “very fine” particles < 300 nm, where 300 nm is the OPC lower detection limit. However, to determine size distributions from which particles < 100 nm may be estimated, the resulting count of particles < 300 nm can be used as an additional channel of count data in addition to those obtained from the OPC. To test these methods, the very fine number concentrations determined using a CPC and OPC were compared with those from SMPS measurements and were used to verify the accuracy of a very fine particle number concentration determined by an OPC and CPC. Two “size-distribution” methods, weighted-average and log-probit, were applied to reproduce particle size distributions from OPC and CPC data and were then evaluated relative to their ability to accurately estimate the nanoparticle number concentrations. Various engineered nanoparticles were used to create test aerosols, including titanium dioxide (TiO 2 ), silicon dioxide (SiO 2 ), and iron oxide (Fe 2 O 3 ). These materials were chosen because of their different refractive indices and therefore may be measured differently by the OPC. The count-difference method was able to estimate very fine particle number concentrations with an error between 10.9 to 58.4%. In estimating nanoparticle number concentrations using the size-distribution methods, the log-probit method resulted in the lowest percent errors that ranged from –42% to 1023%. Percent error was lower than the instrument manufacturer's indicated level of accuracy when the test aerosol refractive index was similar to that used for OPC calibration standards. Accuracy could be increased if there was an increase in the size resolution for number concentrations measured by the CPC of very fine particles and mitigation of optical effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.