Abstract

This paper investigates the effect of the incorporation of chain extender on the poly(butylene adipate -co-terephthalate) (PBAT) and their mixture with calcium carbonate (CaCO3) composites. Chain extender (ADR) was used to enhance the compatibility between PBAT and CaCO3, which have poor interfacial adhesion. Mechanical, thermal, and morphological properties of PBAT, PBAT/chain extender, and their composites were studied. The incorporation of the chain extender enhanced Young’s modulus and elongation at break of the neat PBAT, which is an indicator of the interaction between both materials. These results were confirmed by 1H NMR and 13C NMR (proton – hydrogen and carbon nuclear magnetic resonance, respectively). The chain extender acted by dispersing the CaCO3 particles; however, with an increase in the filler content, there is a decrease in the mechanical properties. Thermogravimetric analysis showed that chain extender has no influence on neat PBAT thermal behavior and their composites containing CaCO3. Differential scanning calorimetric analysis showed a decrease in crystallinity values of the PBAT and its composites, which is due to the physical impediment in the organization of polymer chains. Photomicrographs, obtained by scanning electron microscopy, showed that chain extender does not influence PBAT morphology. However, in the composites, chain extender enhanced the dispersion on CaCO3 particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call