Abstract

Japanese flounder, Paralichthys olivaceus juveniles were vaccinated against viral hemorrhagic septicemia (VHS) by intramuscular injection of 10 μg of a plasmid DNA vector which encodes the viral hemorrhagic septicemia virus (VHSV) glycoprotein (G) gene under the control of the cytomegalovirus promoter. Experimental challenge of two viral doses (1 × 10 2 TCID 50 and 1 × 10 3 TCID 50) one month post-vaccination revealed that the G gene was able to induce protective immunity against VHS and this lasted until 21 days after the challenge. The VHSV G-protein gene DNA vaccine had a high protective efficiency, giving relative percentage survival (RPS) values of at least 93%. The defense mechanisms activated by the DNA vaccine were further elucidated by microarray analysis. Non-specific immune response genes such as NK, Kupffer cell receptor, MIP1-α and Mx1 protein gene were observed to be up-regulated by the VHSV G-protein DNA vaccine at 1 and 3 days post-immunization. Also, specific immune-related genes including the CD20 receptor, CD8 alpha chain, CD40 and B lymphocyte cell adhesion molecule were also up-regulated during that time. We observed significant up-regulation of some immune-related genes that are necessary for antiviral defense. Significant up- and/or down-regulation of unknown genes was also observed upon DNA vaccination. Our results confirm previous reports that the VHSV G gene elicits strong humoral and cellular immune responses which may play a pivotal role in protecting the fish during virus infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call