Abstract
In this paper, we attempted to find a relation between bacteria living conditions and their genome algorithmic complexity. We developed a probabilistic mathematical method for the evaluation of k-words (6 bases length) occurrence irregularity in bacterial gene coding sequences. For this, the coding sequences from different bacterial genomes were analyzed and as an index of k-words occurrence irregularity, we used , which has a distribution similar to normal. The research results for bacterial genomes show that they can be divided into two uneven groups. First, the smaller one has W in the interval from 170 to 475, while for the second it is from 475 to 875. Plants, metazoan and virus genomes also have W in the same interval as the first bacterial group. We suggested that second bacterial group coding sequences are much less susceptible to evolutionary changes than the first group ones. It is also discussed to use the W index as a biological stress value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.