Abstract

Cerebral stroke greatly contributes to death and disability rates in China and the whole world. Effective non-invasive imaging device for bedside monitoring of stroke is critically needed in clinically. This study developed a lightweight (350 kg) and low-footprint magnetic resonance imaging (MRI) system for brain imaging. Static magnetic field was built using an H-typed permanent magnet, which has 50.9 mT magnetic field strength (corresponding to 2.167 MHz proton Larmor frequency). Biplanar gradient coils were designed using the target field method based on dipole equivalent. Radio-frequency coils were optimized by particle swarm optimization. The 2 MHz MRI system was deployed in the Department of Neurology of hospital to test its performance in stroke imaging detection. Gradient recall echo and fast spin echo sequences were utilized to acquire T1- and T2-weighted MR images, respectively. Brain images of a healthy volunteer, a patient with hemorrhagic stroke, a patient of ischemic stroke, and a patient with ischemic stroke and images from 17-day long-term monitoring of hemorrhagic stroke were obtained with a 1.5 mm * 2.0 mm spatial resolution in plane, and a 10 mm thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.