Abstract

Unilateral injury to the forelimb representation area of the sensorimotor cortex (FL-SMC) in adult rats causes over-reliance on the unimpaired forelimb for postural-motor movements, as well as overgrowth of layer V pyramidal cell dendrites in the homotopic cortex of the noninjured hemisphere. The overgrowth appears to be use-dependent because it can be prevented by restricting movements of the unimpaired forelimb. Additionally, restricting the unimpaired forelimb in animals with FL-SMC damage results in significantly greater behavioral dysfunction when examined 2 d after cast removal (compared to that after impaired-limb immobilization, or no limb immobilization). In the present study, the long-term behavioral and anatomical effects of limb immobilization were examined. Animals with FL-SMC lesions were fitted with casts immediately after the lesion that immobilized the impaired forelimb, the unimpaired forelimb, or neither forelimb for 15 d. Immobilization of the nonimpaired forelimb resulted in chronic prevention of dendritic growth and severe and chronic behavioral deficits. In addition, immobilization of the nonimpaired forelimb resulted in a dramatic exaggeration of the neuronal injury, presumably attributable to forced overuse of the impaired limb. Immobilization of the impaired forelimb resulted in no detectable neural changes and in only slightly increased and longer-lasting behavioral asymmetries (compared to nonimmobilized, lesioned animals), presumably attributable to mild disuse of the impaired limb. Immobilization of a single forelimb in nonlesioned rats resulted in no significant behavioral or anatomical changes. Together, these results suggest that although behavioral experience can enhance neural growth after brain injury, the region surrounding the injury may be vulnerable to behavioral pressure during the early postlesion period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.