Abstract
The transforaminal and interlaminar approaches are the two main surgical corridors of full endoscopic lumbar surgery. However, there are no quantifying methods for assessing the best surgical approach for each patient. This study aimed to establish an artificial intelligence (AI) model using an artificial neural network (ANN). Patients who underwent full endoscopic lumbar spinal surgery were enrolled in this research. Fourteen pre-operative factors were fed into the ANN. A three-layer deep neural network was constructed. Patient data were divided into the training, validation, and testing datasets. There were 899 patients enrolled. The accuracy of the training, validation, and test datasets were 87.3%, 85.5%, and 85.0%, respectively. The positive predictive values for the transforaminal and interlaminar approaches were 85.1% and 89.1%, respectively. The area under the curve of the receiver operating characteristic was 0.91. The SHapley Additive exPlanations algorithm was utilized to explain the relative importance of each factor. The surgical lumbar level was the most important factor, followed by herniated disc localization and migrating disc zone level. ANN can effectively learn from the choice of an experienced spinal endoscopic surgeon and can accurately predict the appropriate surgical approach.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.