Abstract

Historically, invertebrates have been excellent models for studying endocrine systems and for testing toxic chemicals. Some invertebrate endocrine systems are well suited for testing chemicals and environmental media because of the ease of using certain species, their sensitivity to toxic chemicals, and the broad choice of models from which to choose. Such assays will be useful in identifying endocrine disruptors to protect invertebrate populations and as screening systems for vertebrates. Hormone systems are found in all animal phyla, although the most simple animals may have only rudimentary endocrine systems. Invertebrate endocrine systems use a variety of types of hormones, including steroids, peptides, simple amides, and terpenes. The most well-studied hormone systems are the molting and juvenile hormones in insects, the molting hormones in crustaceans, and several of the neurohormones in molluscs and arthropods. These groups offer several options for assays that may be useful for predicting endocrine disruption in invertebrates. A few invertebrate phyla offer predictive capabilities for understanding vertebrate endocrine-disrupting chemicals. The echinoderms, and to a lesser extent molluscs, have closer evolutionary relationships with the vertebrates than the arthropods and these phyla. The recently identified estrogen receptor structure within the genome of the marine gastropod, Aplysia, indicates that the estrogens, and probably the basic steroid receptor, are quite old evolutionarily. This review of the recent literature confirms the effects of some endocrine-disrupting chemicals on invertebrates--tributyltin on snails, pesticides on insects and crustaceans, and industrial compounds on marine animals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.