Abstract
Probabilistic forecasts are becoming more and more available. How should they be used and communicated? What are the obstacles to their use in practice? I review experience with five problems where probabilistic forecasting played an important role. This leads me to identify five types of potential users: Low Stakes Users, who don't need probabilistic forecasts; General Assessors, who need an overall idea of the uncertainty in the forecast; Change Assessors, who need to know if a change is out of line with expectatations; Risk Avoiders, who wish to limit the risk of an adverse outcome; and Decision Theorists, who quantify their loss function and perform the decision-theoretic calculations. This suggests that it is important to interact with users and to consider their goals. The cognitive research tells us that calibration is important for trust in probability forecasts, and that it is important to match the verbal expression with the task. The cognitive load should be minimized, reducing the probabilistic forecast to a single percentile if appropriate. Probabilities of adverse events and percentiles of the predictive distribution of quantities of interest seem often to be the best way to summarize probabilistic forecasts. Formal decision theory has an important role, but in a limited range of applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Statistical Analysis and Data Mining: The ASA Data Science Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.