Abstract
Previous electrophysiological research on human creative cognition has related creative ideation to increased activity in the alpha band, an effect which mainly reflects increased general attentional demands. Research on alpha unrelated to creativity has revealed different functional roles of the upper (semantic processes) and lower (attentional processes) alpha sub-bands. At the same time, the need to dissect creative thinking into specific cognitive operations, such as, semantic processing, re-representation, or conceptual expansion has become evident. The main aim of the reported study was to test whether increased semantic processing demands linked to creating conceptual re-representations of objects required for evaluating alternate uses modulate activity in the upper and/or lower alpha sub-bands. For this purpose, we performed an alternate use evaluation task (AUeT), in which participants saw word pairs representing common uses, alternate uses, and unrelated word pairs, and evaluated whether a given use was common or uncommon (question 1), and how usable it was (question 2). Such an approach allowed us to examine the time-course of semantic processing involved in evaluating alternate uses. Additionally, the results could be contrasted with event-related potential (ERP) studies on creative language and semantic processing. We assumed that demands related to access and integration of semantic information needed to create a re-representation of objects (alternate uses) would be larger than in the case of common uses, which do not require creating a re-representation. This should be reflected in more activity in the alpha band in response to alternate than common uses, which was observed in the analysis of the upper alpha band over parieto-occipital sites. In the lower alpha band, more activity over the left than right anterior sites was observed for alternate uses, which might reflect increased attentional demands. Additionally, in the ERP analysis, alternate uses evoked larger N400 (400–500 ms) amplitudes than common uses, a pattern that extended to later time windows (500–1,000 ms). Overall, the results indicate increased semantic processing demands in alternate use evaluation, possibly linked to the creation of conceptual re-representations.
Highlights
Electrophysiological studies on creativity have often employed divergent thinking tasks, in which creative ideas are generated by participants in laboratory settings
A linear effect was found with unrelated word pairs evoking the largest N400 amplitudes, followed by alternate uses, which were followed by common uses [F(1, 21) = 7.5, p = 0.01, ηp2 = 0.26]
The results showed a main effect of word pair type [F(2, 42) = 7.08, p < 0.01, η2 = 0.25], with common uses evoking the largest upper alpha event-related desynchronization (ERD) (M = −45.50, SE = 5.07), which differed significantly from alternate uses (M = −30.04, SE = 8.55) (p = 0.02, d = 0.65) and unrelated word pairs (M = −32.84, SE = 6.07) (p = 0.001, d = 0.93)
Summary
Electrophysiological studies on creativity have often employed divergent thinking tasks, in which creative ideas are generated by participants in laboratory settings. Conceptual expansion in evaluation tasks has frequently been investigated in electrophysiological studies that have, rarely been explicitly considered in the discussion of electrophysiological markers of creativity They have predominantly employed the event-related potential (ERP) method to examine meaning construction, e.g., in novel metaphor comprehension (Arzouan et al, 2007; Goldstein et al, 2012; Jankowiak et al, 2017; Rataj et al, 2018). We aimed to combine the two approaches to test whether changes in the alpha band and the N400 response index increased semantic processing demands in an alternate use evaluation task (AUeT). The AUeT we employed in the current study allowed us to examine both ERPs and changes in the alpha-band oscillations with fine temporal resolution needed to dissect alternate use evaluation into specific cognitive processes. We will present and justify the methodological modifications we decided to apply in the current study
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.