Abstract

In recent years, global optimization algorithms are used in many engineering applications. Calibration of certain parameters at conceptualization of hydrological models is one example of these. An important issue in interpreting the effects of climate change on the basin depends on selecting an appropriate hydrological model. Not only climate change impact assessment studies, but also many water resources planning studies refer to such modeling applications. In order to obtain reliable results from these hydrological models, calibration phase of the models needs to be done well. Hence, global optimization methods are utilized in the calibration process. In this chapter, the differential evolution algorithm (DEA), which has rare application in the hydrological modeling literature, was explained. As an application, the use of the DEA algorithm in the hydrological model calibration phase was mentioned. DYNWBM, a lumped model with five parameters, was selected as the hydrological model. The calibration and then validation period performances of the DEA based DYNWBM model were tested and also compared with other global optimization algorithms. According to the results derived from the study, hydrological model appropriately reflects the rainfall-runoff relation of basin for both periods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.