Abstract
Accurately predicting the spread of the SARS-CoV-2, the cause of the COVID-19 pandemic, is of great value for global regulatory authorities to overcome a number of challenges including medication shortage, outcome of vaccination, and control strategies planning. Modeling methods that are used to simulate and predict the spread of COVID-19 include compartmental model, structured metapopulations, agent-based networks, deep learning, and complex network, with compartmental modeling as one of the most widely used methods. Compartmental model has two noteworthy features, a flexible framework that allows users to easily customize the model structure and its high adaptivity that allows well-matured approaches (e.g., Bayesian inference and mixed-effects modeling) to improve parameter estimation. We retrospectively evaluated the prediction performances of the compartmental models on the CDC COVID-19 Mathematical Modeling webpage based on data collected between August 2020 and February 2021, and subsequently discussed in detail their corresponding model enhancement. Finally, we presented examples using the compartmental models to assist policymaking. By evaluating all models in parallel, we systemically evaluated the performance and evolution of using compartmental models for COVID-19 pandemic prediction. In summary, as a 100-year-old epidemic approach, the compartmental model presents a powerful tool that is extremely adaptive and can be readily customized and implemented to address new data or emerging needs during a pandemic.Graphical
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.