Abstract

BackgroundIn the development of medical devices usability is an important aspect standing alongside performance and safety. Peritoneal dialysis (PD) can be provided by use of automated PD (APD), assisted by a cycler performing the solution exchanges. The present study has been executed to simulate training on APD cyclers to evaluate learnability and usability through established questionnaires.MethodsUsability of two APD cyclers (sleep•safe harmony, Fresenius Medical Care, Bad Homburg, Germany and HomeChoice Pro, Baxter International Inc., Deerfield (IL), USA) were evaluated with the User Experience Questionnaire (UEQ), the NASA TLX Questionnaire, and the System Usability Scale (SUS), both after training and after experience sessions.ResultsLay persons (n = 10) and health care personnel (HCPs, n = 11) participated in the study. The respondents consistently gave positive ratings in the UEQ after training and experience session. The ratings from the NASA TLX Questionnaire were mostly below 50 points indicating a low workload. Lay users and HCPs gave high ratings in the SUS evaluation both after the training and experience sessions confirming a good learnability and usability of the devices.ConclusionsThe usability study to assess learnability and use-related safety revealed consistent results with all applied instruments, which demonstrated good learnability and ease-of-use of the studied APD cyclers.

Highlights

  • In the development of medical devices usability is an important aspect standing alongside performance and safety

  • Typical automated Peritoneal dialysis (PD) (APD) cyclers contain a set of features, firstly a mechanism to transport the peritoneal dialysis

  • To avoid any potential bias, the group of patients was represented by lay users who do currently not use dialysis, who were not foreseen to be treated with dialysis in the near future, and who had no experience with any APD device

Read more

Summary

Introduction

In the development of medical devices usability is an important aspect standing alongside performance and safety. Peritoneal dialysis (PD) can be provided by use of automated PD (APD), assisted by a cycler performing the solution exchanges. While a broad range of technical functions is incorporated to ensure the device performs as intended and is safe, the user, i.e., a person interacting and operating the device is a further “component” to be considered. This is taken into account by human factors or usability engineering, which aims at “understanding how people interact with technology and studying how interface design affects the interactions people have with technology” [2]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call