Abstract
A liver-on-a-chip (liver-chip) is a microfluidic device carrying liver cells such as human hepatocytes. It is used to reproduce a part of liver function. Many microfluidic devices are composed of polydimethylsiloxane (PDMS), which is a type of silicone elastomer. PDMS is easy to process and suitable for cell observation, but its high hydrophobicity carries the risk of drug absorption. In this study, we evaluated drug absorption to the PDMS device and investigated the drug responsiveness of human hepatocytes cultured in the PDMS device (hepatocyte-chips). First, the absorption rates of 12 compounds to the PDMS device were measured. The absorption rates of midazolam, bufuralol, cyclosporine A, and verapamil were 92.9, 71.7, 71.4, and 99.6%, respectively, but the other compounds were poorly absorbed. Importantly, the absorption rate of the compounds was correlated with their octanol/water distribution coefficient (log D) values (R2 = 0.76). Next, hepatocyte-chips were used to examine the response to drugs, which are typically used to evaluate hepatic functions. Using the hepatocyte-chips, we could confirm the responsiveness of drugs including cytochrome P450 (CYP) inducers and farnesoid X receptor (FXR) ligands. We believe that our findings will contribute to drug discovery research using PDMS-based liver-chips.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.