Abstract

Mycotoxin management in agriculture is an essential challenge for maintaining the health of both animals and humans. Choosing the right adsorbent is still a question for many breeders and an important criterion for feed manufacturers. New adsorbents are still being sought. Graphene oxide is a promising material in the field of nanotechnology, which excels in its adsorption properties. Presented in vitro study investigates graphene oxide for the binding of mycotoxins from crushed wheat. The results show that graphene oxide has an adsorption capacity for aflatoxin 0.045 mg/g, zearalenone 0.53 mg/g and deoxynivalenol 1.69 mg/g at 37° C. In vitro simulation of crushed wheat digestion showed rapid adsorption during the gastric phase. Of the minerals, Mg, Cu and Zn were the most adsorbed. The applied dose of graphene oxide of 10 mg/g caused only a slight inhibition of the digestive enzymes α-amylase and trypsin compared to pepsin and gastric lipase. In vitro results indicated the suitability of graphene oxide in the adsorption of the aflatoxin, zearalenone and deoxynivalenol.

Highlights

  • Mycotoxins are a chemically broad group of compounds characterized by low molecular weight

  • DON, AFB1 and ZEA was purchased from MyBioSource (San Diego, USA). α-Amylase, Lipase, Bile bovine, Pancreatin, Pepsin, Trypsin-chymotrypsin inhibitor, Hemoglobin, 4-Bromophenylboronic acid, tributyrin, p-Toluene-sulfonyl-L-arginine methyl ester, and other chemicals unless noted otherwise were purchased from Sigma Aldrich (USA). 3,5-Dinitrosalicylic acid was purchased from Thermofisher Scientific (Waltham, USA)

  • The present study was designed to determine the efficiency of graphene oxide (GO) as a mycotoxin adsorbent

Read more

Summary

Introduction

Mycotoxins are a chemically broad group of compounds characterized by low molecular weight. They are usually produced by moulds, especially species Aspergillus, Penicillium, Alternaria and Fusarium. There are many species, only a few are monitored [1] These species pose a health risk to both humans and livestock, and their occurrence causes considerable economic damage every year. The most involved are aflatoxins (AFB1), fumonisins, ochratoxins, trichothecenes and zearalenone (ZEA) [1,2,3]. Their presence in the feed may occur before, after harvest, during storage and transport of crops. Clinical signs of intoxication include gastrointestinal dysfunction, anaemia, reduction in the production parameters, reduced weight gain, lower feed efficiency and increased sensitivity to environmental and microbial stressors [7,8,9,10,11]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.