Abstract
Electroencephalography (EEG) holds promise as a neuroimaging technology that can be used to understand how the human brain functions in real-world, operational settings while individuals move freely in perceptually-rich environments. In recent years, several EEG systems have been developed that aim to increase the usability of the neuroimaging technology in real-world settings. Here, the usability of three wireless EEG systems from different companies are compared to a conventional wired EEG system, BioSemi’s ActiveTwo, which serves as an established laboratory-grade ‘gold standard’ baseline. The wireless systems compared include Advanced Brain Monitoring’s B-Alert X10, Emotiv Systems’ EPOC and the 2009 version of QUASAR’s Dry Sensor Interface 10–20. The design of each wireless system is discussed in relation to its impact on the system’s usability as a potential real-world neuroimaging system. Evaluations are based on having participants complete a series of cognitive tasks while wearing each of the EEG acquisition systems. This report focuses on the system design, usability factors and participant comfort issues that arise during the experimental sessions. In particular, the EEG systems are assessed on five design elements: adaptability of the system for differing head sizes, subject comfort and preference, variance in scalp locations for the recording electrodes, stability of the electrical connection between the scalp and electrode, and timing integration between the EEG system, the stimulus presentation computer and other external events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.